China supplier OEM Industrial Iron Transmission Timing Belt Pulleys with RoHS crankshaft pulley

Product Description

OEM Industrial Iron Transmission Timing Belt Pulleys with RoHS

Synchronous belt pulley transmission is composed of an annular belt with equidistant teeth on the inner peripheral surface and a belt pulley with corresponding teeth. During operation, the belt teeth mesh with the tooth slots of the belt pulley to transmit motion and power. It is a new belt transmission that integrates the respective advantages of belt transmission, chain transmission and gear transmission.

Product Parameters

Product standard timing belt pulley & idler pulley
Customized OEM, drawings or samples customized
Teeth type Normal Torque Drive Type:MXL,XL,L,H,XH,XXH
High Torque Drive Type:S2M,S3M,S5M,S8M,HTD2M,HTD3M,HTD5M,HTD8M,P2M,P3M,P5M,P8M
High Precision Position Drive Type:2GT,3GT,5GT,8YU
Light Load Drive Type:T5,T10,T20
Heavy Load Drive Type:AT5,AT10,AT20
Basic shape Type A,Type B,Type D,Type E,Type F,Type K
Adaption Adapt to 1/4 inch,5/16 inch,1/2 inch, 3/8inch, 2/25inch, 1/5inch belt
surface treatment Natural color anodizing,Black anodizing,Hard anodizing,Ni-plating,Blackening
Material 6061(aluminum),S45C(45# steel),SUS304(Stainless steel)
Bore Pilot bore, Taper bore and Customized bore.
Tolerance Control Outer diameter ±0.005mm   Length dimension ±0.05mm
Standard DIN, ISO/GB, AGMA, JIS
Teeth Accuracy DIN Class 4, ISO/GB Classs 4, AGMA Class 13, JIS Class 0
Weight Max 15Tons
testing equipment projecting apparatus,salt spray test,durometer,and coating thickness tester,2D projector
producing  equipment CNC machine,automatic lathe machine,stamping machine,CNC milling machine,rolling machine,lasering,tag grinding machine etc.
Machining Process Gear Hobbing, Gear Milling, Gear Shaping, Gear Broaching,Gear Shaving, Gear Grinding and Gear Lapping
Application industry Robot industry,Medical industry,Making machine industry,Automation industry,3C industry equipment,Packaging industry,UAV industry,New energy industry.

Company Profile

Packaging & Shipping

lead time 10-15 working days as usual,30days in busy season,it will based on the detailed order quantity
Delivery of samples by DHL,Fedex,UPS,TNT,EMS

FAQ

Main markets Southeast Asia, North America, Eastern Europe, Mid-East, West Europe
How to order *You send us drawing or sample
*We carry through project assessment
*We give you our design for your confirmation
*We make the sample and send it to you after you confirmed our design
*You confirm the sample then place an order and pay us 30% deposit
*We start producing
*When the goods is done,you pay us the balance after you confirmed pictures or tracking numbers
*Trade is done,thank you!

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Certification: ISO9001:2008
Pulley Sizes: Type A
Manufacturing Process: Forging
Material: Aluminium Alloy
Surface Treatment: Polishing
Application: Chemical Industry, Grain Transport, Mining Transport, Automation Equipment
Samples:
US$ 10/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

pulley

How do V pulleys handle different belt types and sizes?

V pulleys are designed to accommodate different belt types and sizes to ensure efficient power transmission. Here’s an explanation of how V pulleys handle variations in belt types and sizes:

1. Groove Profile:

The groove profile of a V pulley is specifically designed to match the shape of the V-belt used in the power transmission system. The angle, depth, and width of the groove are tailored to the corresponding V-belt dimensions. This ensures that the belt fits securely and engages properly with the pulley, creating the necessary friction for effective power transmission.

2. Belt Width:

V pulleys are available in different widths to accommodate belts of varying widths. The pulley width corresponds to the nominal width of the belt it is designed to work with. It is important to select a pulley with the appropriate width to ensure proper alignment and engagement of the belt.

3. Belt Type:

V pulleys can handle different types of V-belts, such as:

  • Classical V-Belts: These are standard V-belts with a trapezoidal cross-section and are commonly used in various industrial applications.
  • Narrow V-Belts: These belts have a narrower width and are used in applications where space is limited or higher speeds are required.
  • Double V-Belts: Also known as hexagonal V-belts, these belts have a double-sided V-shaped cross-section and are designed to transmit power on both sides of the belt.
  • Cogged V-Belts: These belts have notches or cogs on the inner surface, which allow for higher power transmission capacity and improved flexibility.
  • Variable Speed V-Belts: These belts are designed to operate efficiently at varying speeds and provide a wide range of speed ratios.
  • Synchronous Belts: These belts have teeth that mesh with corresponding grooves in the pulley, providing precise power transmission and eliminating slippage.

Each belt type has specific design characteristics, and V pulleys are manufactured to match the corresponding belt type for optimal performance.

4. Tensioning:

V pulleys are designed to work in conjunction with belt tensioning mechanisms to maintain the required tension in the belt. Tensioning devices such as idler pulleys or tensioners are used to adjust the tension and ensure proper belt engagement with the pulley.

5. Speed Ratio:

The pulley diameter ratio determines the speed ratio between the driving and driven pulleys in a belt drive system. By selecting pulleys of different diameters, different speed ratios can be achieved to suit the specific application requirements.

6. Compatibility:

It is essential to ensure compatibility between the V pulleys and the belts used in the system. This includes considering factors such as the pulley groove profile, belt width, belt type, and speed requirements. Manufacturers provide specifications and guidelines to help users select the appropriate pulleys for their specific belt types and sizes.

By considering these factors, V pulleys can effectively handle different belt types and sizes, providing reliable power transmission in various applications.

pulley

How are V pulleys employed in automotive engines and accessories?

V pulleys play a crucial role in automotive engines and accessories by enabling efficient power transmission and driving various engine components. Here’s a detailed explanation of how V pulleys are employed in automotive engines and accessories:

1. Serpentine Belt System:

Modern automotive engines often utilize a serpentine belt system, which consists of a single, continuous belt that drives multiple engine accessories. The V pulley is a key component in this system, as it provides the necessary driving force for the serpentine belt.

2. Crankshaft Pulley:

The crankshaft pulley is one of the primary V pulleys in an automotive engine. It is connected to the crankshaft, which converts the reciprocating motion of the pistons into rotational motion. The crankshaft pulley drives the serpentine belt, which, in turn, drives various engine accessories.

3. Accessories Driven by V Pulleys:

V pulleys are responsible for driving several important engine accessories, including:

  • Alternator: The alternator generates electrical power to charge the battery and power the vehicle’s electrical systems.
  • Power Steering Pump: The power steering pump provides hydraulic assistance to make steering easier for the driver.
  • Air Conditioning Compressor: The air conditioning compressor pressurizes refrigerant to cool the cabin air.
  • Water Pump: The water pump circulates coolant throughout the engine to maintain optimal operating temperature.
  • Engine Cooling Fan: In some vehicles, the engine cooling fan is driven by a V pulley to regulate the engine temperature.

4. Speed Control and Belt Routing:

V pulleys allow for speed control and belt routing in automotive engines. By using different-sized pulleys, the speed ratio between the crankshaft pulley and the driven accessories can be adjusted. This ensures that the accessories operate at the desired speed for optimal performance.

Additionally, V pulleys and the serpentine belt system allow for efficient belt routing, maximizing the available space in the engine compartment and optimizing the packaging of engine accessories.

5. Tensioning and Belt Alignment:

Proper tensioning and belt alignment are critical for efficient power transmission and preventing belt slippage or premature wear. V pulleys in automotive engines are often accompanied by tensioners and idler pulleys that help maintain the correct tension in the serpentine belt and ensure proper belt alignment.

6. Durability and Maintenance:

V pulleys used in automotive engines are designed to withstand the demanding conditions of engine operation, including high temperatures, vibrations, and continuous rotation. They are typically made of durable materials such as steel or aluminum.

Regular maintenance, including periodic inspection, tension adjustment, and belt replacement, is necessary to ensure the efficient operation of the V pulley system in automotive engines and accessories.

Overall, V pulleys are essential components in automotive engines and accessories, providing reliable power transmission and driving various engine systems. Their design features, combined with the serpentine belt system, contribute to the efficient operation of automotive engines, ensuring optimal performance and functionality of engine accessories.

pulley

What are the primary components and design features of a V pulley?

A V pulley, also known as a V-belt pulley or sheave, consists of several primary components and design features that enable its functionality. Here’s an explanation of the primary components and design features of a V pulley:

1. Body:

The body of a V pulley is the main structural component. It is typically made of metal, such as cast iron or steel, to provide strength and durability. The body is designed to support the V-belt and transmit power from the driving source to the driven component. It may have a solid construction or be split into two halves for easy installation or replacement.

2. Groove:

The groove is a key design feature of a V pulley. It is a V-shaped channel or groove that runs along the outer circumference of the pulley. The groove is specifically designed to accommodate the V-belt with a corresponding trapezoidal cross-section. The V shape of the groove enhances the grip between the pulley and the belt, ensuring efficient power transmission and reducing the risk of slippage.

3. Diameter:

The diameter of a V pulley refers to the distance across its outer circumference. It plays a crucial role in determining the speed ratio and torque transmission of the power transmission system. By changing the diameter of the pulley, different speed ratios can be achieved between the driving source and the driven component. Larger pulley diameters generally result in higher belt speeds and lower torque, while smaller diameters lead to slower belt speeds and higher torque.

4. Number of Grooves:

V pulleys can have a single groove or multiple grooves, depending on the specific application. The number of grooves corresponds to the number of V-belts used in the power transmission system. Multiple grooves allow for the simultaneous power transmission to multiple driven components, such as in systems with multiple accessories or pulleys in automotive engines.

5. Tapered or Straight Design:

V pulleys can have a tapered or straight design, depending on the requirements of the application. Tapered pulleys are wider at one end and narrower at the other, allowing for easier belt installation and improved belt tracking. Straight pulleys have a consistent width along their entire circumference and are commonly used in applications where belt tracking is not a significant concern.

6. Surface Finish:

The surface finish of a V pulley is important for optimizing the performance and lifespan of the V-belt. The pulley’s surface should be smooth and free from any roughness or irregularities that could cause excessive belt wear or damage. Proper surface finish ensures proper belt contact, reduces friction, and enhances the overall efficiency of the power transmission system.

7. Mounting Mechanism:

V pulleys are mounted on shafts or bearings using various mounting mechanisms, such as set screws, bolts, or keyways. The mounting mechanism ensures secure and reliable attachment of the pulley to the rotating shaft, allowing for the transmission of rotational motion and torque.

By considering these primary components and design features, engineers can select and design V pulleys that are suitable for specific applications, ensuring efficient power transmission and reliable operation in mechanical systems.

China supplier OEM Industrial Iron Transmission Timing Belt Pulleys with RoHS   crankshaft pulley	China supplier OEM Industrial Iron Transmission Timing Belt Pulleys with RoHS   crankshaft pulley
editor by CX