Product Description
Product Description
A timing pulley is a wheel component used for transmission, which is often used in combination with a timing belt or a synchronous chain to achieve precision synchronous transmission. The timing pulley usually consists of 2 parts: the wheel flange and the hub. The wheel flange usually has a toothed structure that can be combined with a timing belt or chain to achieve a precise synchronous transmission effect. Synchronous wheels can be divided into 2 categories: grinding gear synchronous wheels and forged tooth synchronous wheels.
Product Parameters
product | Metal Iron Timing Belt Pulley/ Synchronous Belt Pulley for Packaging machine |
material | stainless steel , iron , aluminum ,bronze ,carbon steel ,brass etc . |
size | ISO standard ,customer requirements |
BORE | Finished bore, Pilot Bore, Special request |
surface treatment | Carburizing and Quenching,Tempering ,Tooth suface high quenching Hardening,Tempering |
Processing Method | Molding, Shaving, Hobbing, Drilling, Tapping, Reaming, Manual Chamfering, Grinding etc |
Heat Treatment | Quenching & Tempering, Carburizing & Quenching, High-frequency Hardening, Carbonitriding…… |
Package | Wooden Case/Container and pallet, or made-to-order |
Certificate | ISO9001 ,SGS |
Machining Process | Gear Hobbing, Gear Milling, Gear Shaping, Gear Broaching, Gear Shaving, Gear Grinding and Gear Lapping |
Applications | Toy, Automotive, instrument, electrical equipment, household appliances, furniture, mechanical equipment,daily living equipment, electronic sports equipment, , sanitation machinery, market/ hotel equipment supplies, etc. |
Testing Equipment | Rockwell hardness tester 500RA, Double mesh instrument HD-200B & 3102,Gear measurement center instrument CNC3906T and other High precision detection equipments |
workshop & equipment
Production process
Certifications
Our Advantages
1 . Prioritized Quality
2 .Integrity-based Management
3 .Service Orientation
4 .150+ advanced equipment
5 .10000+ square meter factory area
6 .200+ outstanding employees
7 .90% employees have more than 10 year- working experience in our factory
8 .36 technical staff
9 .certificate ISO 9001 , SGS
10 . Customization support
11 .Excellent after-sales service
shipping
sample orders delivery time:
10-15 working days as usual
15-20 working days in busy season
large order leading time :
20-30 working days as usual
30-40 working days in busy season
FAQ
1. why should you buy products from us not from other suppliers?
We are a 32 year-experience manufacturer on making the gear, specializing in manufacturing varieties of gears, such as helical gear ,bevel gear ,spur gear and grinding gear, gear shaft, timing pulley, rack, , timing pulley and other transmission parts . There are 150+ advanced equipment ,200+ excellent employees ,and 36 technical staff . what’s more ,we have got ISO9001 and SGS certificate .
2: What are the common types of tooth profiles for synchronous belt pulleys?
A: The most common tooth profiles for synchronous belt pulleys are the trapezoidal (or T-type) and curvilinear (or HTD-type) profiles. The tooth profile determines the pitch diameter, which affects the overall ratio of the gear drive.
3 .How long is the delivery?
A: Small orders usually takes 10-15 working days,big order usually 20-35 days, depending on orders quantity and whether are standard size.
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
Certification: | ISO |
---|---|
Pulley Sizes: | Type D |
Manufacturing Process: | Forging |
Material: | Stainless Steel |
Surface Treatment: | Electroplating |
Application: | Chemical Industry, Grain Transport, Mining Transport, Power Plant |
Samples: |
US$ 5/Piece
1 Piece(Min.Order) | |
---|
Customization: |
Available
| Customized Request |
---|
Can V pulleys withstand variations in environmental conditions?
V pulleys are designed to withstand variations in environmental conditions to a certain extent. However, their ability to withstand different environmental factors depends on several factors, including the materials used, the specific design of the pulley, and the maintenance practices employed. Here is a detailed explanation:
1. Temperature:
V pulleys can generally withstand a wide range of temperatures. The specific temperature limits depend on the materials used for construction. For example:
- Cast iron and steel pulleys can handle high temperatures and are suitable for applications in industrial environments.
- Aluminum pulleys have a lower temperature limit, and excessive heat can affect their structural integrity.
- Plastic pulleys may have temperature limitations, and exposure to high temperatures can cause deformation or melting.
It’s important to consider the temperature range in which the V pulleys will operate and select materials accordingly.
2. Moisture and Corrosion:
V pulleys can be susceptible to corrosion, particularly if they are made of materials like cast iron or steel. Exposure to moisture, humidity, or corrosive substances in the environment can lead to rust or degradation of the pulley components.
To mitigate corrosion risks, protective measures can be taken, such as:
- Using corrosion-resistant materials like stainless steel or aluminum alloy.
- Applying coatings or finishes like zinc plating, powder coating, or anodizing to provide a barrier against moisture and corrosive agents.
- Regular cleaning and maintenance to remove accumulated dirt, debris, or corrosive substances.
3. Dust and Contaminants:
V pulleys may be exposed to dust, dirt, and other contaminants present in the environment. These particles can accumulate in the pulley grooves, affecting the grip and performance of the V-belt.
To minimize the impact of dust and contaminants:
- Implement proper guarding to prevent the ingress of debris and contaminants.
- Regularly clean the pulleys to remove accumulated dirt and ensure smooth belt operation.
- Consider using pulley covers or seals to provide additional protection against contamination.
4. Shock and Vibration:
V pulleys may be subjected to shock loads or vibrations in certain applications. These dynamic forces can affect the overall performance and integrity of the pulley and the power transmission system.
Design considerations, such as proper balancing, robust construction, and secure hub attachment, can help minimize the impact of shock and vibration on the pulleys.
5. UV Exposure:
If V pulleys are used in outdoor applications, they may be exposed to ultraviolet (UV) radiation from sunlight. Prolonged UV exposure can degrade certain materials, particularly plastics, causing them to become brittle or discolored.
If UV exposure is a concern, selecting materials with UV-resistant properties or applying protective coatings can help mitigate the effects of UV radiation.
While V pulleys are designed to withstand variations in environmental conditions, it is essential to consider the specific requirements of the application and select appropriate materials, coatings, and maintenance practices to ensure their long-term performance and durability.
Can V pulleys be part of fitness equipment like treadmills and stationary bikes?
Yes, V pulleys can be part of fitness equipment like treadmills and stationary bikes, playing a crucial role in their operation. Here’s a detailed explanation:
1. Belt Driven Systems:
Treadmills and stationary bikes often use belt-driven systems to transfer power from the motor or user’s pedaling motion to the moving components of the equipment. V pulleys are an integral part of these systems as they provide the necessary power transmission and control.
2. Motor Drive:
In motorized treadmills and stationary bikes, the V pulley is connected to the motor shaft, which drives the belt. The motor provides the rotational power needed to move the belt, allowing the user to walk, jog, or run on the treadmill or pedal the stationary bike. The size and design of the V pulley influence the speed and torque delivered to the belt and, consequently, the user’s movement.
3. Tension and Belt Alignment:
Proper tensioning and alignment of the belt are crucial for smooth and efficient power transfer in fitness equipment. V pulleys are often accompanied by tensioners and idler pulleys that help maintain the correct tension in the belt and ensure proper belt alignment. This ensures optimal performance and prevents belt slippage or premature wear.
4. Speed Control:
V pulleys allow for speed control in treadmills and stationary bikes. By using pulleys of different sizes, the speed ratio between the motor or user’s pedaling motion and the belt can be adjusted. This enables users to select their desired workout intensity by adjusting the speed at which the belt moves or the resistance level on stationary bikes.
5. Quiet Operation:
The design of V pulleys, combined with the flexibility and smooth engagement of V-belts, contributes to the quiet operation of fitness equipment. The pulley and belt system minimizes noise generation, providing a more enjoyable and peaceful workout experience for users.
6. Durability and Maintenance:
V pulleys used in fitness equipment are designed to withstand the demanding conditions of regular use. They are often made of durable materials such as steel or aluminum to ensure longevity. Regular maintenance, including periodic inspection, lubrication, and occasional belt replacement, is necessary to maintain the efficiency and reliability of the V pulley system in fitness equipment.
Overall, V pulleys are an essential component of fitness equipment like treadmills and stationary bikes, facilitating efficient power transmission, speed control, and user movement. Their design features, combined with properly tensioned belts, contribute to the overall performance, durability, and quiet operation of fitness equipment, supporting users in achieving their fitness goals.
What are the primary components and design features of a V pulley?
A V pulley, also known as a V-belt pulley or sheave, consists of several primary components and design features that enable its functionality. Here’s an explanation of the primary components and design features of a V pulley:
1. Body:
The body of a V pulley is the main structural component. It is typically made of metal, such as cast iron or steel, to provide strength and durability. The body is designed to support the V-belt and transmit power from the driving source to the driven component. It may have a solid construction or be split into two halves for easy installation or replacement.
2. Groove:
The groove is a key design feature of a V pulley. It is a V-shaped channel or groove that runs along the outer circumference of the pulley. The groove is specifically designed to accommodate the V-belt with a corresponding trapezoidal cross-section. The V shape of the groove enhances the grip between the pulley and the belt, ensuring efficient power transmission and reducing the risk of slippage.
3. Diameter:
The diameter of a V pulley refers to the distance across its outer circumference. It plays a crucial role in determining the speed ratio and torque transmission of the power transmission system. By changing the diameter of the pulley, different speed ratios can be achieved between the driving source and the driven component. Larger pulley diameters generally result in higher belt speeds and lower torque, while smaller diameters lead to slower belt speeds and higher torque.
4. Number of Grooves:
V pulleys can have a single groove or multiple grooves, depending on the specific application. The number of grooves corresponds to the number of V-belts used in the power transmission system. Multiple grooves allow for the simultaneous power transmission to multiple driven components, such as in systems with multiple accessories or pulleys in automotive engines.
5. Tapered or Straight Design:
V pulleys can have a tapered or straight design, depending on the requirements of the application. Tapered pulleys are wider at one end and narrower at the other, allowing for easier belt installation and improved belt tracking. Straight pulleys have a consistent width along their entire circumference and are commonly used in applications where belt tracking is not a significant concern.
6. Surface Finish:
The surface finish of a V pulley is important for optimizing the performance and lifespan of the V-belt. The pulley’s surface should be smooth and free from any roughness or irregularities that could cause excessive belt wear or damage. Proper surface finish ensures proper belt contact, reduces friction, and enhances the overall efficiency of the power transmission system.
7. Mounting Mechanism:
V pulleys are mounted on shafts or bearings using various mounting mechanisms, such as set screws, bolts, or keyways. The mounting mechanism ensures secure and reliable attachment of the pulley to the rotating shaft, allowing for the transmission of rotational motion and torque.
By considering these primary components and design features, engineers can select and design V pulleys that are suitable for specific applications, ensuring efficient power transmission and reliable operation in mechanical systems.
editor by CX
2024-03-12